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Abstract. The magnetic properties of the compound CeNiSn2 were studied by magnetization
measurements and neutron diffraction. The refinement of the nuclear structure shows that this
compound is slightly Ni-deficient, the corresponding formula being CeNi0.840(4)Sn2. At 1.5 K
two coexisting magnetic phases were observed in equal amounts. One of these is ferromagnetic
q1 = 0 with TC = 3 K. The other phase is an antiferromagnetic modulated phase (antiphase
domain type with two amplitudes) withTN = 4.0 K. Its magnetic ordering can be described in
terms of two propagation vectorsq2 = (010) (CP magnetic lattice) andq3 = 1

3b∗. The ordered
magnetic moment value at 1.5 K in both phases is 2.0µB per Ce atom and points in the same
direction alongc. Above 2 K the wavevectorq3 becomes incommensurate with the crystal
lattice. The observation of two magnetic phases is attributed to the occurrence of concentration
fluctuations associated with the Ni deficiency.

1. Introduction

CeNiSn2 crystallizes with the CeNiSi2 type of structure [1–2] (Cmcm space group,a =
0.4485 nm, b = 1.774 nm, c = 0.4513 nm, Z = 4). According to Skolozdra and
Komarovskaya [2] CeNiSn2 forms a range of solid solutions characterized by different
degrees of Ni deficiency. It is still an open question whether a compound having the
stoichiometric composition really exists. Francoiset al [3] reported that the upper limit
of x in CeNixSn2 is 0.74. Investigations of the microstructure of several samples of
different composition by means of x-ray methods and electron probe micro-analysis (EPMA)
have indicated a higher value for the upper limit ofx, but still below x = 1 [4].
Magnetic properties have been reported for apparently stoichiometric CeNiSn2 which orders
antiferromagnetically belowT I

N = 3.9 K [2, 5] (θp = 5 K andµeff = 2.43µB). On the basis
of specific heat and magnetic susceptibility measurements [5] CeNiSn2 undergoes at 2.6 K
a second magnetic phase transition but its Néel temperature is supposed to lie at slightly
higher temperatures (T II

N = 3.2 K) similarly to the isomorphic CeNiGe2 compound. From
plots of unit cell volumes versus atomic number of the lanthanides for the RNiGe2 and
RNiSn2 series both Ce compounds show no anomaly indicating a valence fluctuation. The
present authors have reported recently on the magnetic ordering of the CeNiGe2 compound
on the basis of neutron powder data [6]. The 1.5 K neutron data of CeNiGe2 have shown
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the presence of a single magnetic peak, situated in a general reciprocal lattice position
which did not allow a complete data analysis. It is of interest in the same context to study
the magnetic ordering of CeNiSn2. We will report on magnetic measurements and neutron
diffraction experiments on a sample of nominal composition CeNiSn2.1, the results of which
indicate the coexistence of various types of magnetic ordering.

2. Experimental

A sample of the nominal composition CeNiSn2.1 was prepared by arc melting from starting
elements of at least 99.9% purity. The sample was wrapped in Ta foil and annealed in
an evacuated silica tube at 800◦C for three weeks. The excess Sn was chosen in order to
compensate for Sn losses during arc melting (Skololozdra and Komarovskaya report [2a]
the existence of defect structures both at the Ni and at the Sn1 sites).

Four sets of neutron diffraction data at various temperatures in the range 1.8–293 K and
various wavelengths were collected and evaluated by the program Fullprof [7]. Two sets
(λ = 0.1704 and 0.2337 nm) were collected at the Reactor Saphir in Würenlingen, on the
DMC (double-axis multicounter system, high-intensity mode) forT = 1.5, 3.3 and 10 K
and on the double-axis diffractometer P2Ax for 1.5–8.0 K respectively. The step increment
in 2θ for both data sets was 0.2◦. The other two sets of neutron data were collected at
the facilities of the Orph́ee reactor (LLB-Saclay), using the G4.2 double-axis diffractometer
(λ = 0.5995 nm (1.5–8.0 K) andλ = 0.199 843 nm (293 K, with high-resolution mode in
the range 2θ = 1–155◦)). The step increments in 2θ were 0.1◦ and 0.05◦ respectively. In
view of the expected low value of the Ce moment, neutron diffraction measurements were
performed on a large powder sample of nominal composition CeNiSn2.1, using a vanadium
sample holder of 15 mm diameter. Magnetic measurements were performed on a SQUID
magnetometer in the temperature range 1.7–10 K in fields up to 5 T.

3. Results and discussion

3.1. Magnetic measurements

Results of magnetic measurements performed in the high-temperature range are shown in
figure 1, in which we have plotted the reciprocal susceptibility versus temperature. From
the slope of this curve we derive an effective moment of 2.44µB per Ce atom, which is
close to the value for trivalent Ce. The Curie–Weiss intercept is very small and equal to
θp = −4.8 K.

Results obtained in the low-temperature range are shown in figure 2. They show that
antiferromagnetic ordering occurs close to 4 K, with a second magnetic transition below
about 3 K. This is more clearly seen in the temperature-dependence of the AC susceptibility
shown in figure 3.

The field-dependence of the magnetization for several selected temperatures is shown
in figure 4. The low-field part of the magnetic isotherms is shown in more detail in
figure 5. These results show that the antiferromagnetic ordering present at around 4 K can be
broken in fairly low magnetic fields, which is accompanied by a small hysteresis. At lower
temperatures a ferromagnetic contribution to the magnetization develops. It is very small
at 2.9 K but has become much larger at 1.75 K. In fact, the magnetic isotherm at 2.9 K can
be decomposed into a very small ferromagnetic contribution and a larger antiferromagnetic
contribution. The ferromagnetic contribution dominates the isotherm at 1.75 K, possibly
obscuring the presence of any antiferromagnetic contribution. It is very likely that the two
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Figure 1. The reciprocal susceptibility versus temperature measured in a field of 5 T.

Figure 2. The low-temperature magnetization versus temperature for various fields up to 5 T.

contributions are due to two different coexisting magnetic phases. The neutron diffraction
data, to be discussed below, have shown that the sample is Ni-deficient, which gives rise
to concentration fluctuations associated with the vacancy distribution. Magnetic ordering
is therefore not uniform throughout the sample. At 1.5 K roughly half of the sample
displays long-range antiferromagnetic ordering. The other half is the ferromagnetic phase.
Probably the ferromagnetic phase is present as a spin glass or cluster glass forT > 3 K
and presumably it is only in the spin glass regions of the sample that the predominant
antiferromagnetism can be broken easily at higher temperatures in fairly low fields, as
mentioned above. In the other regions the antiferromagnetism remains preserved in all field
strengths considered in this investigation.



8638 P Schobinger-Papamantellos et al

Figure 3. The AC susceptibility as a function of temperature.

Figure 4. The field-dependence of the magnetization for several selected temperatures.

3.2. Nuclear structure

The neutron pattern collected in the paramagnetic state, is shown in figure 6 (top part). The
results shown correspond closely to those obtained recently in a detailed determination of the
crystal structure of the present compound by means of high-resolution neutron diffraction
at room temperature [8]. Results of the latter study and x-ray diffraction made it possible to
identify the non-overlapping foreign lines at 2θ angles 49◦ and 51◦, indicated by arrows in
figure 6, as belonging to the orthorhombic Ni3Sn2 [9] compound which was subsequently
included in the refinement. The refined parameters given in table 1 confirm the CeNiSi2
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Figure 5. The low-field part of the magnetic isotherms of figure 2.

type of structure [1] with a deviation of the Ni occupancy (0.84(1)) from the stoichiometric
composition corresponding to the formula CeNi0.84Sn2. The qualitative analysis yields
4.3 wt.% of the Ni3Sn2 phase. Although the low value of the nuclear reliability factor
(4.5%) presents strong evidence in favour of the reported off-stoichiometry, we found high
χ2 values (> 50). Apparently these are due to the long counting time applied in the present
investigation since the high-resolution neutron diffraction study of the same sample led to
much lower values (χ2 = 2). The enhancement of the nuclear reflections{200, 002} and
{202} visible in the difference diagram at 2θ values 45◦, 65◦ and 68.5◦ was shown to be due
to some preferential orientation of the powder particles [8], which is probably associated
with their plate-like shape. From the results described above and from the results of the
high-resolution neutron diffraction study described elsewhere [8], we can conclude that the
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Figure 5. (Continued)

CeNiSi2-type compound is present in the paramagnetic regime as a single crystallographic
phase. However, the off-stoichiometry associated with the formula CeNi0.84Sn2 implies the
presence of concentration fluctuations. As will be shown in the following sections, the
magnetically ordered regime is not characterized as a single magnetic phase, regions of
different Ni or vacancy concentration leading to different magnetic ordering phenomena.

3.3. The uni-axial ferromagnetic phase

The 1.5 K neutron diffraction pattern in the magnetically ordered state (see figure 6, bottom
part) shows no visible changes compared with that obtained in the paramagnetic state at
10 K because the very weak magnetic contributions occur at reciprocal lattice positions
of the chemical cell. The only well-resolved change, visible from the enhancement of the
(040)/(110) reflections, is shown in figure 7 (top part) on a larger scale. Anticipating the
results of the complete data analysis given below, it turns out that even the intensities of
these two peaks are composed of five contributing magnetic reflections, indicated by bars
at the bottom of the figure part. The deconvoluted peaks are list in table 2.

The relative intensities of the first two observed magnetic reflections, (020) and
(040, 110) as shown in the difference diagram figure 8, suggest thatb cannot be the easy
axis of magnetization and that the intensity enhancement is associated with ferromagnetic
contributions. This can be disclosed from the comparison of the observed and calculated
intensity ratioIo(020)/Io(040). The calculated intensity ratio resulting from contributions of
only the real part of the structure factor (ferromagnetic mode F(++++)) is 0.272, whereas
the ratio resulting from the imaginary part (antiferromagnetic mode G(+ − +−)) is 17.93.
The former value compares more favourably with the observationsIo(020)/Io(040) � 1. The
signs of the F and G modes refer to the moment orientation of the Ce atoms at the 4(c) site:
r1 = (0, y, 1

4), r2 = (0, −y, 3
4), r3 = ( 1

2, 1
2 + y, 1

4), r4 = ( 1
2, 1

2 − y, 3
4).

The refinement of the entire 1.5 K neutron pattern converges for aFz ferromagnetic
moment arrangement corresponding to the magnetic space groupCm′c′m(Sh(462

63 )) [10, 11]
which allows for the 4(c) symmetry position only aFz contribution. Apparently the axis of
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Figure 6. Observed and calculated neutron intensities of a sample of nominal composition
CeNiSn2 in the paramagnetic state at 10 K (top) and in the magnetically ordered state at 1.5 K.
The arrows in the 10 K data indicate the strongest nuclear reflections of Ni3Sn2. The refined
sample composition is CeNi0.84Sn2.

easy magnetization corresponds to the shortest axisc, as already found for some isomorphic
compounds of the RMxSi2 and RMxGe2 [6, 12] formula. The ordered moment value
(2.1(2)µB) for Ce is very close to the full moment value (gJµB = 2.14µB) of the Ce3+

ion, as also suggested in [5].
This result is, however, in contradiction to the magnetic measurements reported in

section 3.1, showing a much smaller magnetic moment and predominant antiferromagnetism.
Therefore we performed alternatively a refinement based on the difference diagram (1.5–
10)K obtained by subtracting from the magnetically ordered data the nuclear contributions,
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Table 1. Refined structural parameters of the CeNi0.84Sn2 compound in the ferromagnetic
paramagnetic state at 10 K and in the magnetically ordered state at 1.5 K.ocNi is the occupancy
of Ni site µz is the ferromagnetic moment valueFz (set I, q1 = 0). µ(2) = µx/z is the
antiferromagnetic moment value (Cx or Cz) (set II, q2 = (010)). µ(3) is the antiferromagnetic
moment value (Fourier components) giving rise to the transversal amplitude-modulated structure
alongc (set III, q3 = 1

3b∗ or q3 = (0qy0)). mα andmβ are the moment values in the calculation
in the (a, 3b, c) cell (column 5).

Temperature

Parameter 10 K 1.5 K(inc) 1.5-10 K(mod) 1.5–10 K(a, 3b, c)

yCe 0.1063(5) 0.1060(5) 0.1062 0.106
yNi 0.3169(3) 0.3168(3)
ocNi 0.84(1) 0.84(1)
ySn(1) 0.4505(4) 0.4508(4)
ySn(2) 0.7462(4) 0.7461(4)
µz[µB ] (set I) 1.13(16) 1.38(3) 1.38(3)
µ(2)[µB ] (set II) 0.15(11) 0.29(1)
µ(3)[µB ] (set III) 2.02(14) 169(3)
mα [µB ], mβ [µB ] 1.40(4), 1.13(2)
q3y (r.l.u) 0.29(1) 0.333(3)
a (nm) 0.44675(8) 0.44673(8) 0.44672 0.466675
b (nm) 1.7869(3) 1.7868(4) 1.78666 5.35998
c (nm) 0.44876(8) 0.44872(9) 0.44877 0.44877
Bof (nm)2 0.008(1) 0.010(1) 0.0020(6) 0.0020(6)
Rn(%), Rm1(%), Rm2(%) 4.5,–,– 5.78, 11.0, 27 –, 19.6, 18.0 –, 18.7, 19.3
Rwp(%), Rexp(%), χ2 11.3, 1.6, 53 13.1, 1.43, 83 33, 19.3, 2.9 33, 19.3, 3.05

see figure 8. This was undertaken in order to avoid an artefact of the refinement that could
have arisen by refining large nuclear contributions with overlapping weak magnetic peaks.

3.4. The difference diagram (1.5–10)K

In the difference diagram one may distinguishthree setsof magnetic peaks (denoted by I,
II and III) which indicate the coexistence of different types of ordering. As already stated,
one set (I) follows the reflection conditions of the nuclear reflections (denoted by arrows
in figure 8) with h + k = 2n of the C cell and corresponds to a ferromagnetic moment
arrangement alongc(q1 = 0). The second set (II) corresponds to lattice positions of a
cell with the same dimensions as the primitive cell with the wavevector (q2 = (010)) and
indicates the presence of a small antiferromagnetic component alonga or c. The only
direct observed line is (010) at 2θ ' 5◦. This indicates a symmetry reduction since, for a C
magnetic lattice, the low-symmetry 4(c) positionm2m allows only uni-axial arrangements
of G(+ − +−) or F(+ + ++) type [12]. Only an anti-centred magnetic latticeCp [10, 11]
(with the antitranslation operationtC = ( 1

2, 1
2, 0)) is compatible with the reflection condition

(0k0) with k = 2n + 1. The modes for the 4(c) position compatible with theCp lattice are
C(+ + −−) or A(+ − −+).

The best fit was achieved for a ferromagnetic moment componentµz = 1.37(3)µB per
Ce atom for set (I) and a smallCx (or Cz) antiferromagnetic contribution of 0.29(1)µB per
Ce atom for set (II), as given in tables 1 and 2. A projection of the ferromagnetic structure
is shown in figure 9(a). Figure 9(b) shows a possible canting of the ferromagnetic structure
when assuming that the observed antiferromagneticCx (Cz) (set II) and ferromagnetic (set I)
modes originate from one and the same structure.



Magnetic properties of CeNi0.84Sn2 8643

Table 2. Some of the observed and calculated integrated neutron magnetic intensities of the
compound CeNi0.84Sn2 obtained from the refinement of the difference diagram 1.5 K–10 K in
the magnetically ordered state by substracting the 10 K nuclear contributions. The indexinghkl

(set I) refers to the commensurate ferromagnetic phaseFz(++++). The indexinghkl∗ (set II)
refers to a possible antiferromagnetic modeCx (or Cz) (++−−). The indexinghkl+/− (set III)
refers to the magnetic satellites of the incommensurate phase with wavevectorq3 = 1

3b∗.

hkl hkl∗ hkl ± q3

(I) (II) 2θ (degrees) Icalc I ∗
calc Iobs (III) 2θ (degrees) Icalc Iobs

010∗ 5.467 1087 1181
020− 9.117 1019 1039

020 10.946 515 724
020+ 12.717 0 42

030∗ 16.450 33 272
001 21.888 0 0 040− 20.140 588 491

100∗ 21.990 100 91 001± 21.966 0 0
040 21.993 1724 1572 {110}− 22.300 1300 1376

011∗ 22.577 4 4
110 22.676 2508 2742 {110}+ 23.196 578 578

{021}− 23.755 166 158
021 24.533 652 698 040+ 23.851 645 603

120∗ 24.625 8 8 {021}+ 25.425 304 92
031∗ 27.504 36 20 {130}− 26.503 46 0

130 27.586 458 246 {130}+ 28.751 332 296
101∗ 31.222 0 0 {041}− 29.915 144 88

041 31.224 204 182 060− 31.355 236 225
140∗ 31.298 72 68 {111}− 31.445 136 128

111 31.722 748 696 {111}+ 32.105 444 516
121∗ 33.179 84 56 {041}+ 32.594 22 28

060 33.252 358 250 {150}− 34.085 602 588
131 35.489 1460 1376 {131}− 34.632 656 828
150 35.556 1384 1314 060+ 35.157 61 65

{131}+ 36.426 408 380
141∗ 38.520 16 24 {150}+ 37.072 408 436

{061}− 38.568 106 144
061 40.166 424 240 {151}− 40.877 0 0

160∗ 40.225 20 12 {061}+ 41.799 202 250
151 42.144 52 24 080− 42.889 26 0

{151}+ 43.465 80 32
002 44.631 0 0 {170}− 43.522 22 14
200 44.847 399 395 002− 44.672 0 0
080 44.853 137 134 200 44.888 286 276

012∗ 45.000 11 10 {022}− 45.652 2 2
071∗ 45.166 28 24 {220}− 45.864 56 12
210∗ 45.215 22 20 {022}+ 46.616 0 0

022 46.096 2 0 080+ 46.830 75 29
220 46.306 40 14 {081}− 48.650 160 194

230∗ 48.082 6 12 {171}− 49.230 264 264
042 50.292 94 84 {042}− 49.420 24 26

{240}− 49.620 136 105
{112}− 50.441 72 64

201 50.438 0 0 201− 50.476 16 16
081 50.444 304 270 {112}+ 50.890 36 36
240 50.489 458 404 {042}+ 51.226 44 56
112 50.628 144 128 {221}− 51.371 268 344
171 50.779 908 796 {240}+ 51.421 194 250
221 51.778 820 1056 {221}+ 52.255 324 356

{081}+ 52.260 70 78
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Figure 7. The only two resolved reflections with magnetic contributions,{040} and {110},
below and aboveTN = 4.2 K (top). Also shown is the thermal variation of the ferromagnetic
integrated neutron intensities of the reflections{040} and{110} (bottom).

The resulting ferromagnetic uni-axial moment arrangement confirms theCm′c′m
(Sh(462

63 )) magnetic space group derived from the analysis of the 1.5 K data. On the other
hand, the ordered moment value is more accurate (smaller error) and is reduced by a factor
of

√
2 compared with the value resulting from the refinement of the entire 1.5 K data.

However, as will be discussed below, the antiferromagnetic mode (II) when taken
parallel to thec axis (Cz(++−−) mode) could alternatively be combined with (set III) which
pertains to the second magnetic phase also present in the sample. The temperature-dependent
measurement (see figure 7 (bottom part)) shows that the ferromagnetic intensity contribution
(set I) disappears aboveTC = 3.2 K, in agreement with the magnetic measurements shown
in figure 5.
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Figure 8. Observed and calculated difference diagrams of CeNi0.84Sn2 (1.5–10 K) comprising
three sets of magnetic reflections associated with the wavevectorsq1 = 0, q2 = (010) and
q3 = 1

3b∗.

3.5. The modulated magnetic structureq3 = (0, qy, 0)

The third set of magnetic reflections (set III) can be directly identified from the presence
of weak satellites, 0k0 − q3 and 0k0 + q3 at either side of the 020 and the 040 reflections.
Incidentally the intensity of the 020+ satellite is too small to be detected and the 040+
satellite overlaps with other reflections, see figure 7. On the other hand, since the satellites
of the (0k0) reflections are equidistant from the main reflections the wavevector has to be
along theb axis. In a powder pattern the(0k0)± satellites associated with a wavevector
along a or c coincide and appear at larger 2θ angles relative to the main reflection. It
has been possible to index these reflections as satellites of the nuclear reflections of the
reciprocalC lattice (a∗, b∗, c∗) using a wavevectorq3 = (0, qy, 0) with qy ≈ 1

3. We will
see that, in spite of the weakness of these reflections, we can establish a model that explains
the observed pattern and predicts the existence of an intense(0, 0, 0) ± q3 satellite. This
satellite has been observed using long-wavelength neutrons (see section 3.8). The magnetic
‘satellite’ reflections appear at points

Q = 2π(H ± mq3) (1)

whereH is a reciprocal lattice vector of the chemical cell andm an integer. In the Fourier
representation of magnetic structures a periodic moment arrangementµnj is expressed
as the superposition of all observed Fourier coefficients(Sqj , S−qj ) associated with the
wavevector(s)±q [13]. Thus the full description of a magnetic structure with several
wavevectors implies the knowledge of the directions of the magnetic moments for eachSqj
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Figure 9. A projection of the magnetic structures observed in the neutron data at 1.5 K of
CeNi0.84Sn2: (a) the ferromagnetic mode parallel toc in the (100) plane, (b) the ferrimagnetic
mode in the (010) plane and, (c) the transversal amplitude-modulated structure with wavevector
q3 = 1

3b∗ and the square wave withq2 = (010) andq3 = 1
3b∗. Atom labelsj , j ′ andj ′′ refer

to the parameters defined in the incommensurate description (Cej , j = 1–4) while different
patterns (Ce1I , Ce1

II , and Ce1III ) were used to show the threefold splitting of the 4c site in the
commensurate description.

and the coupling between the variousSqj [7]:

µnj =
∑
(q)

Sqj exp(−2πq · Rn) =
∑
{q}

Tq exp{−2π iq·Rnj } (2)

whereRnj is a positional vector of thej th atom in thenth cell (Rnj = Rn + rj ).
Since only first-order satellites were observed, we first applied a model with a sine

wave incommensurate modulated phase. In such a structure the moment valueµnj of the
j th atom in thenth cell may be derived from the moment value (Fourier coefficients) in
the zeroth cell:

µnj =
∑

q

Sqj exp(−2π iq · Rn) = µ0j cos(2πq · Rn + ϕj ) = µ0jz cos(2πq · Rn + ϕj ) (3)

where z is a unit vector in the direction of the varying moment component,µ0j is the
amplitude of the sinusoidal variation andϕj is a phase factor of thej th atom relative
to the origin of the wave, which is usually taken at atom (1). In our case a reasonable
assumption is that the four Ce atoms of the same (4c) site have the same wave amplitude
µ0j = µ(3). From the fact that the magnetic reflections are satellites of only the allowed
nuclear reflectionshkl with h + k = 2n we can conclude a phase of only 2πq · tC = π/3,
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between atoms related by theC translation operation. In fact formula (3) describes the full
magnetic structure if centring translations are included inRn, so only the two atoms in a
primitive cell, namely with position vectorsr1 = (0, y, 1

4), andr2 = (0, −y, − 1
4), have to

be considered. Therefore the parameters to be refined from the neutron magnetic intensities
are the amplitude lengthµ(3) and the directionz of polarization, the phase angle between
the atoms atr1 andr2 and the wavevector lengthqy .

From the possible models the best fit was obtained for a transversal amplitude-modulated
structure with the moments polarized along thec axis as found for the ferromagnetic phase.
The refined amplitude value corresponds to 1.69(3)µB per Ce atom and the phase is zero.

Within the error limits (we have used restricted resolution for the selected experimental
conditions: large sample radius and large step of 0.2◦) the wavevector length can be
approximated as a threefold cell enlargement along theb axis q3 = (0, 1

3, 0). The moment
arrangement resulting from equation (3) is displayed in figure 9(c). If we note the atoms
related to the cell at the origin by translationstb and 2tb with prime and double prime, the
values of the magnetic moments in the triple crystallographic cell are given by the following
relations.

For the reference crystallographic cell:Rn = (0, 0, 0) andRn = ( 1
2, 1

2, 0)

µj = µ(3) for j = 1, 2

µj = µ(3) cos(π/3) = µ(3)/2 for j = 3, 4.

For the cell translated bytb: Rn = (0, 1, 0) andRn = ( 1
2, 3

2, 0)

µj = µ(3) cos(2π/3) = −µ(3)/2 for j = 1′, 2′

µj = µ(3) cos(3π) = −µ(3)/2 for j = 3′, 4′.

For the cell translated by 2tb: Rn = (0, 2, 0) andRn = ( 1
2, 5

2, 0)

µj = µ(3) cos(4π/3) = −µ(3)/2 for j = 1′′, 2′′

µj = µ(3) cos(5π/3) = µ(3)/2 for j = 3′′, 4′′.

Two values of the magnetic momentm = µ(3) and m′ = µ(3)/2 are present in this
sinusoidal model. Of course, for a sinusoidal structure there is a global phase that does not
affect the magnetic intensities and is arbitrary. The choice of this phase (8 = 0 for us) will
determine the value of the moments in the different cells.

3.6. The commensurate approximation (a, 3b, c)

The existence of a commensurate wavevector valueq3 = 1
3b∗ makes available the possibility

of performing the calculations also as if for a commensurate structure with a three times
larger cell (a, 3b, c), the two methods being equivalent. The cell enlargement 3b leads
to the space groupCmcm [14] and the 4(c) position splits into three 4(c) positions: Ce1

I

(0, y/3, 1
4), Ce1

II (0, (1−y)/3, 3
4), and Ce1III (0.5, (0.5−y)/3, 3

4), with y = 0.106; see also
figure 9(c).

The best fit was obtained for a collinear moment arrangement alongc with the
Cz(+ + −−) mode. Because of theCp antitranslation each sub-lattice is antiferromagnetic.
The sub-lattices Ce1

I and Ce1III are parallel whereas Ce1
II is perpendicular. There are two

different ordered moment values:mα = µCe1
I

= 1.40(4)µB andmβ = −µCe1
II

= µCe1
III

=
−1.13(2)µB . The magnetic space group isCpm′c′m or, in the Shubnikov notation,PBnma

(Sh
(

454
62

)
), [10b, 11].
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3.7. The squaring up of the modulated magnetic structure

The two values of the magnetic moments (m, m′) in (4) are not the same as the two magnetic
moments of the commensurate description becausemα/mβ 6= 1

2 whereasm/m′ = 1
2. This

is because the calculation as a commensurate phase with aCp lattice comprises allhkl

observations (withk = 3n andk = 3n ± 1) whereas in the description of a pure sinusoidal
modulated structure only first order satellites (k = 3n ± 1) were considered. The two
results can be rendered equivalent if one considers a possible deviation from the sinusoidal
modulation or a squaring up. Using formula (3) and including the Fourier coefficients of
the third harmonic 3q3, which is equivalent to the vector addition of the Fourier component
S(q2) with a moment amplitudeµ(2) = 0.29(1)µB per Ce of theCz(+ + −−) mode with
q2 = (010) = 1b∗ (see section 3.4), one obtains the full structure description using a phase
of π betweenS(q2) andS(q3) (remember thatµ(3) = 1.69(1)µB per Ce):

Mnj =
∑

q

Sqj exp(−2π iq · Rn) = µ(2) cos(2πq2 · Rn + π) + µ(3) cos(2πq3 · Rn) (4)

Mnj = −µ(2) cos[2π(n + δ/2)] + µ(3) cos[2π(n + δ/2)/3] (5)

with δ = 0 for integer translations (atoms 1 and 2) andδ = 1 for centred translations (atoms
3 and 4). Applying formula (4) and taking into account that the common direction of the
amplitudesµ(2) andµ(3) is z, we obtain forn = 0

M1 = M2 = −µ(2) + µ(3) = 1.40µB = mα (6)

M3 = M4 = µ(2) + µ(3) = 1.135µB = −mβ (7)

The reader can verify that the formula (4) gives the same magnetic structure as that described
in section 3.6.

The ratio of the amplitudes of the Fourier coefficientsQ = µ(2)/µ(3) is a measure of
the deviation of the structure from the pure sinusoidal model towards an antiphase domain
structure in which translationally equivalent atoms have the same moment value but their
signs may vary from cell to cell in the direction of the wavevector in a periodic way, namely
for q3 = 1

3b∗ one obtains the ferrimagnetic chain±(++−++−· · ·). However, due to the
phase shiftπ/3 between atoms related by theC translation the total is antiferromagnetic.

For µ(2) = 0, Q = 0, the collinear magnetic structure is a purely sine-wave-modulated
structure or an antiphase domain with two amplitudes. For,Q = (1 − cosπ/3)/2 = 1

4
the structure would be a purely antiphase domain type with the moments having the same
value but different signs. For any value 0< Q < 1

4 the collinear modulated structure
begins to square up and needs for its description at least two different magnetic moments.
The value ofQ, is in general temperature-dependent and can be directly deduced from the
intensity variation with temperature of the (010) reflection and of, for instance, the 000−q3

satellite as will be given below (see figure 10). At 1.5 KQ = (0.29/1.69) = 0.17, which
indicates that the structure is closer to the antiphase domain type and that the modulated
antiferromagnetic structure squares up.

3.8. Thermal variation of the wavevectorq3 and of the(000) ± q3, satellite intensity

The magnetic structure model for the antiferromagnetic part of the sample seems quite
complex and is based on weak reflections. However, as stated above, the model predicts
a low-Q reflection, the(0, 0, 0)± satellite, having much greater intensity than any other
magnetic peak. We performed a diffraction experiment using neutrons of wavelength close
to 6 Å. The corresponding data confirm nicely the prediction obtained from relatively noisy
data and allow a more direct identification of the magnetic satellites because of the higher
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Figure 10. (a) The temperature-dependence of the wavevectorq3 = (0, qy, 0) in r.l.u. Also
shown is the temperature-dependence of the integrated neutron intensity of the 000−q3 satellite.
(b) The zero-point satellite 000− q3 at 1.4 K forλ ≈ 6 Å.

resolution. Due to the allocated beam time only the low 2θ angle (0–65◦) data are available
to us at present for a full set of temperatures (1.4–10)K. The temperature-dependence of the
wavevector length and of the integrated neutron intensity of the zero-point satellite 000±q3

magnetic reflection that has become visible at 2θ ≈ 6◦ are displayed in figure 10. These
data confirm the 1.5 K refined lock-in value of the wavevectorq3 = (0, qy, 0) with qy = 1

3
but this value is restricted to the low-temperature regionT < 2 K. Above this temperature
the wavevector length decreases continuously withT and the magnetic structure becomes
incommensurate with the crystal lattice. The very weak (010) reflection seems also to
disappear above the lock-in temperature of about 2 K.

3.9. The Ce ordered moment value of the two phases

Given the fact that the ferromagnetic (set I) and antiferromagnetic (sets II and III) phases
result in about to the same refined ordered moment values of about 1.40µB per Ce (table 1,
column 5), we can assume that the compositionx = 0.84 is a critical value in the magnetic
(T , x) phase diagram of the CeNixSn2 system and that the two magnetic phases are present
in equal amounts. In order to derive the correct moment value for each of these two
phases we have to re-scale the magnetic intensities by taking into account that both phases
constitute only half of the sample. After multiplication by

√
2 we find moment values of

2.0µB per Ce for each phase. The derived moment value is very close to the free-ion value
of (gJµB = 2.14µB) of the Ce3+ ion. The presence of the wavevectorq3 = 1

3b∗ and
of a collinear structure indicate the existence of a strong crystal field anisotropy and the
presence of competing interactions, leading to complex ordering mechanisms, as pointed
out by Kimura in [15, 16] for the orthorhombic TbCu2 compound, showing specific heat
anomalies and a lock-in transition with wavevectorq = 1

3a∗.
It is interesting to compare the Ce moment value derived above for the two phases

with the results of the magnetic measurements. Assuming that the contribution of the
antiferromagnetic phase to the saturation magnetization can be neglected, we find for the
ferromagnetic phase a saturation moment at 1.75 K equal to 2× 0.94µB per Ce= 1.9µB

per Ce (see figure 4). This value is in satisfactory agreement with the neutron data.
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4. Concluding remarks

In the derivation of complex magnetic moment arrangements from neutron data involving
the coexistence of several Fourier coefficients one is always confronted with an ambiguity
in the choice of model. This difficulty arises from the fact that the neutron experiment does
not provide any information about the phases between Fourier coefficients [13] since they
do not contribute to the same set of reflections. So it could be that the structure consists
of coexisting domains rather than the Fourier coefficients of the various vectors adding up
coherently. To overcome this difficulty one needs further information from other physical
properties.

In the present case we are confronted with three sets of Fourier coefficients pertaining to
ferromagnetic orderingFz with q1 = 0(h+k = 2n), to the antiferromagnetic orderingCx or
Cz(++−−) with q2 = (010) and to a modulated antiferromagnetic ordering pertaining to the
wavevectors±q3 = (0, qy, 0). By performing refinements under the simplest assumptions,
we derived the conclusion that the examined sample consists of onlytwo coexisting magnetic
phases.

We cannot completely rule out the possibility that these two phases correspond to
two distinct nuclear structures with neighbouring compositions, having within experimental
accuracy the same lattice constants and being therefore not distinguishable by diffraction
methods. A more likely interpretation of the occurrence of two magnetic phases may be
sought in density fluctuations at the Ni site. In this connection we would like to mention
the results obtained by Lambert-Andronet al [17, 18], who reported the coexistence of
ferromagnetic and antiferromagnetic phases even within a single crystal. Also here there is
a defect compound (CeGe2−x with x ≈ 0.4) and the two coexisting phases correspond to
different degrees of ordering of the Ge vacancies present in the defect structure.

In fact, strong experimental evidence for the occurrence of a Ni deficiency in the sample
investigated by us can be derived from the results discussed in section 3.2. Although
such Ni deficiency would follow already from the nominal composition of the sample and
the observation of 4.3 wt% of Ni3Sn2 as impurity phase, we have presented rather direct
evidence in the form of the refinement of the nuclear structure that had indicated a Ni site
occupancy of only 0.84(1). Exactly the same degree of Ni deficiency was derived from
the high-resolution neutron diffraction results [8]. This Ni deficiency means that there are
Ni concentration fluctuations and a concomitant distribution in interatomic distances. It is
likely that the presence of these concentration fluctuations is the origin of the coexistence
of a ferromagnetic phase and a modulated antiferromagnetic (antiphase domain type) phase
in the low-temperature range.

It is interesting to compare the results obtained in the course of the present investigation
with results obtained on nominally pure CeNiSn2 [5]. In the latter case specific heat
measurements and/or magnetic measurements have shown the presence of two-step magnetic
orderings. This allows the interesting possibility that the transition at the higher temperature
(T I

N ) corresponds to a transversally sine-wave-modulated antiferromagnetic orderingq3 =
(0, qy, 0) whereas the transition at lower temperature (T II

N ) corresponds to the lock-in
transition of the wavevector and the squaring up of the modulated structure (collinear
antiphase domain type) described by two wavevectors (q3 = 1

3b∗ and q2 = 1b∗ (the CP

lattice)), see section 3.5, because of the entropy term in the free energy.
However, the persistence of the two-step character of the magnetic ordering observed

on nominally more deficient CeNixSn2 compounds [4] over wide concentration ranges
seems rather to be connected to the presence of ferromagnetism at lower temperatures.
In all cases two transitions were found, the high-temperature transition corresponding to
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antiferromagnetic ordering. In some regions of the sample having a vacancy concentration
below (or above) a critical value, the atomic disorder results in a cluster-glass-type magnetic
ordering instead of antiferromagnetic ordering. The difference between the various samples
would then primarily be a difference in the relative amounts of the regions, giving rise to
long-range antiferromagnetic ordering as well as a difference in the nature and size of the
cluster glass regions and their distribution. Even when present in relatively small amounts,
these latter regions will have a strong influence on the low-temperature magnetization
because of the development of ferromagnetic order, as observed by neutron diffraction
in the sample investigated by us. Owing to the easy generation of domain walls in such
two-phase systems (already in positive field in at least some of the ferromagnetic regions)
the hysteresis loops are expected to have a less common shape also in samples having a
fairly large amount of the ferromagnetic phase at low-temperatures. Neutron diffraction
studies on these nominally more Ni deficient CeNixSn2 compounds are planned in the near
future.
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